Mental Health
4 min read
December 10, 2022
Mental health: do you care?

Mental health: do you care?

Mental illness represents one of the greatest public health challenges in Australia and globally. Depression, anxiety, and suicide affect millions of people across all ages, with particularly high impact among young adults, men, Indigenous communities, and LGBTQ+ individuals—yet large gaps remain in awareness, detection, and access to care.

Have you suffered challenges to your mental health?

Depression has the third highest burden of all diseases in Australia (13%) [1] and also third globally [2].

Almost half (45%) Australians will experience a mental illness in their lifetime [3].

One in five, about 20%, Australians aged 16-85 experience a mental illness in any year:

  • 11.5% have one disorder and 8.5% have two or more disorders.
  • 14% of Australians suffer from anxiety disorders.
  • 6% depressive disorders [4].

The age with the highest prevalence of mental illness is between 18-24 years of age.

21.2% of adolescents between 15-19 years of age met the criteria for a probable serious mental illness [5].

Six Australians die from suicide every single day, with a further 30 people will attempt to take their own life [6].

Suicide is the leading cause of death for people Australians aged 25-44 and the second leading cause of death for young people aged 15-24 [7].

Australians are more likely to die by suicide than skin cancer.

Indigenous Australians experience double the rate of suicide when compared to non-indigenous Australians [8].

The LGBT community experiences four times the rate when compared with those identified as heterosexual [9].

In 2011, men accounted for 76% of deaths from suicide [10], yet an estimated 72% of males don’t seek help for mental disorders.

54% of sufferers with mental illness do not seek treatment [1], which is only compounded by the delay in treatment due to problems with detection, social stigma and accurate diagnosis.

Individuals with mental illness accessing treatment are half that of people seeking treatment with physical disorders [11].It’s time to raise awareness for mental health.

References

  1. Australian Institute of Health and Welfare. (2014). Australia’s Health 2014. AIHW: Canberra.
  2. World Health Organisation. (2008). The global burden of disease: 2004 update.
  3. Australian Bureau of Statistics. (2009). National Survey of Mental Health and Wellbeing: Summary of Results, 4326.0, 2007. ABS: Canberra.
  4. Kitchener, B.A. and Jorm, A.F. (2009). Youth Mental Health First Aid: A manual for adults assisting youth. ORYGEN Research Centre, Melbourne.
  5. Ivancic, L., Perrens, B., Fildes, J., Perry, Y. and Christensen, H. (2014). Youth Mental Health Report, June 2014. Mission Australia and Black Dog Institute, Sydney.
  6. The Australian Senate. (2010). The Hidden Toll: Suicide in Australia Report of the Senate Community Affairs References Committee. Commonwealth of Australia, Canberra.
  7. http://www.aihw.gov.au/deaths/causes-of- death
  8. Australian Bureau of Statistic. (2012). Australian Health Survey: First Results. ABS, Canberra.
  9. National Mental Health Commission. (2013). A Contributing Life, the 2013 National Report Card on Mental Health and Suicide Prevention. NMHC, Sydney.
  10. Department of Health and Ageing. (2013). National Mental Health Report 2013: tracking progress of mental health reform in Australia 1993 – 2011. Commonwealth of Australia, Canberra.
  11. Commonwealth of Australia. (2010). National Mental Health Report 2010. Canberra, Australia.

Next news

What is the Lymphatic System?

The lymphatic system is becoming increasingly more talked about but is still, in my opinion, one of the least appreciated and under-utilised systems in the restoration of movement dysfunctions and chronic health complaints.

Everybody, including health practitioners and those in the fitness industry, could benefit from understanding and implementing lymphatic techniques. You can consider that a homeostatic balance of the internal environment can be a true measure of health.

Lymphatic techniques can, therefore, aid the body in moving towards more of an internal state of homeostasis.

How does the lymphatic system function?

The lymphatic system is, in essence, the sewage system of the body.

It has the incredible ability to trap nearly all soluble antigens, roughly 99%, with its role in waste removal. This is significantly important for the other body systems to not become overwhelmed and develop issues as well.

The lymphatic system contains the thymus, an endocrine organ which is responsible for the development of T-lymphocytes, immune cells that are involved in fighting infection through the process of cell-mediated immunity.

The spleen plays a key role in the lymphatic system as the largest lymphatic organ, having a vital role in a host of detox processes, such as:

  • Filtering blood
  • Removing old dead red blood cells
  • The maturation of lymphocytes and macrophages to aid in fighting infection

The splenic communication of the tenth cranial nerve, the Vagus nerve, is crucial in reducing inflammatory cytokine production.

The tonsils also form part of the structure of the lymphatic system. With the tonsils formed of lymphatic tissue, housing lymphocytes and macrophages, they protect the digestive system and lungs from pathogens entering through the nose or mouth.

There is also a deep association with the gastrointestinal system through gut associated lymphoid tissues (GALT) known as Peyers Patches, with the role of the gastrointestinal system intrinsically linked to the immune system. Estimates suggest that roughly 70-80% of immune function is beholden to gastrointestinal health.

This amazing system also comprises millions of lymphatic vessels which, if placed end to end in a continuous line, would circle the earth four times! Alongside these vessels there are over seven hundred lymph nodes within the body, with the most populated areas being the neck, skin and the intestines.

This mass of lymphatic vessels works in uniform direction towards the heart, with valves interspersed to prevent any backflow from occurring. This one-way system is aided by the structure of the vessels which allow fluids to flow in the direction of clearance, but with numerous valves preventing backflow. Allowing the system to be cleared, very much how a filtration device on a fish tank would work.

The ability to regulate fluid homeostasis is a key aspect of the lymphatic system. The body contains fifteen litres of lymphatic fluid, predominantly of water, and roughly 10% of proteins, hormones and waste products. Comparing this to the five litres of circulating blood that we have, the body wouldn’t contain three times more lymphatic fluid than blood if it wasn’t a critical component of our survival!

From the five litres of circulating blood, over the course of a day, three litres of plasma leaks out into the interstitial space.

If not appropriately removed through the lymphatic system this can lead to swelling outside of the cellular space due to the increased fluid concentration and alterations in pressure.

Without effective drainage this can create stagnation in the fluids;
Let’s go back to the fish tank analogy above, we know that stagnation of fluids is detrimental to the ecosystem, the same being the case for our health.

In a system with appropriately functioning lymphatics, this plasma is removed from the interstitial space into the lymphatics system and circulated upwards towards the subclavian vein. This is where it flows into the venous system, before returning to the liver, detoxifying and purifying the blood.

Taking a deeper look into the pathway of the lymphatic vessels will give an understanding into the application of treating the lymphatic system.

As a one way system drains into the venous system at the bilateral sites of the subclavian veins, all lymphatic vessels are required to flow in this direction. The right upper quadrant of the body drains through the right lymphatic duct and into the right subclavian vein, whilst the remainder of the body drains through the thoracic duct into the left subclavian vein.

The thoracic duct is responsible for the majority of lymphatic flow and also houses the largest lymph node, the cisterna chyli, which is a major site of drainage for the liver. It’s crucial to keep this node functioning well as between 25-50% of the returning lymphatic fluid through the thoracic duct is returned from the liver.

There is an important bidirectional relationship between the cisterna chyli and the liver, with an overburdened liver that can’t move or function optimally placing more load on the cisterna chyli. Having a lymphatic system that can’t drain well, especially at the cisterna chyli, increases the potential to create stagnation around the liver. A lymphatic vessel that is unable to drain will not be able to receive fresh supply creating this backlog.

A fairly recent discovery reveals that the lymphatic system also continues up into the central nervous system through the glymphatics, more commonly known as the glymphatic system.

The glymphatic system has the same role as the lymphatic system, however it is only situated in the brain. This helps to reduce inflammation and drive the removal of waste products which is essential for overall brain health. Additionally, the protective benefits of this system helps to distribute fuel sources and various other vital components around the brain.

Detox
6 min read
The lymphatic system
The lymphatic system
By clearing waste, regulating fluid movement, and supporting immune and neurological health, the lymphatic system plays a central role in resilience and recovery. Optimising lymphatic flow can be a powerful, underutilised tool in addressing chronic health issues and restoring balance within the body.
November 14, 2022

How many of the following symptoms for iron deficiency do you have?

  • Non-Physical Symptoms
  • Anxiety
  • Cognitive dysfunction
  • Dizziness
  • Fatigue
  • Headaches
  • Lowered attention
  • Light-headedness
  • Mood swings
  • Post-partum depression

Physical:

  • Atrophy or enlargement of the taste buds
  • Compromised immune function
  • Hair loss
  • Koilonychia (Brittle, spoon-shaped nails)
  • Leg cramps / heavy legs
  • Lowered body temperature
  • Mouth sores
  • Pale skin complexion
  • Palpitations
  • Poor thyroid function
  • Skin problems
  • Shortness of breath
  • Swollen tongue
  • Restless legs
  • Pregnancy complications

Here are some of the mechanisms behind the above symptoms:

Iron is required for tryptophan hydroxylase activity, this enzyme converts tryptophan to 5HTP, the precursor for serotonin – the chemical brain messenger responsible for our happiness. Therefore with inadequate iron levels, serotonin production will be reduced.

Iron is also needed for tyrosine hydroxylase, this enzyme is essential for the production of dopamine – the chemical brain messenger that is responsible for our drive and motivation.

Iron is essential for the intracellular reception of T3. This reduces the activity of the main thyroid hormone thus lowering metabolism, energy, whilst leading to hair loss and other related factors.

Iron is required to make hemoglobulin. Hemoglobulin helps carry oxygen within the blood to tissues, an integral part of energy production. If iron is low, the body’s ability to produce energy is hindered therefore increasing the likelihood for fatigue. This same mechanism leads to reduced oxygen availability to the brain giving reason as to why headaches are also linked to iron deficiency.

The paling of the skin and inside of the eyelids is due to less hemoglobulin within the blood, as hemoglobulin gives blood its red pigmentation.

Reduced hemoglobulin levels result in less oxygen within the body. As a compensatory mechanism, the body will start to increase breathing and heart rate in hope to get more oxygen, thus leading to a shortness of breath and increased heart palpitations.

Conditions
6 min read
Symptoms of iron deficiency
Symptoms of iron deficiency
When iron is low, serotonin, dopamine, thyroid activity, and oxygen delivery are all compromised, contributing to fatigue, mood changes, poor concentration, hair loss, shortness of breath, and cardiovascular strain. Identifying and correcting iron deficiency can be a key step in restoring energy, mental clarity, and overall physiological balance.
December 15, 2022

A defining moment in human health

We are standing at the edge of a defining moment in human history — one that will reshape how health is understood, managed, and lived. Most practitioners won’t see it coming until it’s already here. The pace of change is no longer linear; it’s accelerating at a parabolic rate.

Over the next ten years, healthcare will undergo a larger transformation than it has in the past two hundred. What once took generations to evolve will soon happen within a single career span.

Why the next leap will eclipse the last 200 years

In the 1850s, global life expectancy hovered around 35 to 40 years. In industrial cities such as Manchester, it was recorded as low as 26. Up to 40% of children died before the age of five. Since then, humanity has doubled its average lifespan — one of the greatest achievements in modern history.

But that magnitude of progress will soon appear slow compared to what lies ahead. To understand why, we must look at how medicine has actually evolved — not as a straight line, but as a series of paradigm shifts.

Medicine has never moved in a straight line

Medicine does not evolve gradually. It moves through distinct eras, each defined by its dominant questions, tools, and limitations. Every era solves the problems of its time — and creates the blind spots of the next.

Medicine 1.0: survival through intervention

The age of infection and emergency care (1800s–1950s)

The first modern era of medicine was built around one core mission: survival. Its philosophy was direct and uncompromising — find the problem, cut it out, kill the pathogen. The focus was acute illness, trauma, and infectious disease. Surgery, antibiotics, vaccines, early imaging, and public health measures transformed mortality rates almost overnight.

Breakthroughs such as germ theory, penicillin, antisepsis, and sanitation saved millions of lives. Yet this era had little understanding of long-term health. There was no framework for chronic disease, prevention, or personalisation. Medicine 1.0 was exceptional in emergencies, but largely blind to the slow decline of health over time.

Medicine 2.0: managing disease, not health

The rise of chronic disease frameworks (1950s–2010s)

As life expectancy increased, the medical challenge shifted. Infectious disease gave way to chronic illness. Medicine 2.0 emerged with a new goal: management. Cardiovascular disease, diabetes, cancer, and mental health disorders became the dominant focus.

Pharmaceuticals, specialist referrals, evidence-based medicine, and large clinical trials defined this era. Disease was framed as isolated dysfunction within individual organ systems. While imaging, surgical techniques, and electronic health records advanced rapidly, care became fragmented. Poly-pharmacy increased, symptoms were suppressed rather than resolved, and patients often cycled endlessly through the system.

Medicine 2.0 kept people alive — but rarely helped them thrive.

Medicine 3.0: personalisation, prevention, and patterns

From symptoms to systems (2010s–2025)

The limitations of chronic disease management gave rise to a new way of thinking. Medicine 3.0 reframed health as a dynamic, interconnected system shaped by genetics, environment, lifestyle, and time. The focus shifted toward root causes, prevention, and optimisation.

Functional blood work, genomics, microbiome testing, wearables, and systems biology expanded what was possible. Practitioners began looking for patterns rather than isolated markers. Precision nutrition and functional reference ranges replaced one-size-fits-all recommendations.

Yet this era introduced new challenges. Data became abundant but scattered. Interpretation demanded high cognitive load. Standards varied widely, access remained inconsistent, and outcomes depended heavily on practitioner experience. While powerful, Medicine 3.0 was difficult to scale.

Many believe this is the peak of modern healthcare.

Why medicine 3.0 is not the end point

Despite its advances, Medicine 3.0 still relies on humans to manually integrate overwhelming amounts of data, make predictions, and adjust protocols over time. It improved insight — but not intelligence. It offered tools — but not true systems.

The next era changes that entirely.

Medicine 4.0: intelligence, automation, and decentralised health

Predictive, adaptive, and continuously evolving care (2025–2040+)

Medicine 4.0 represents a fundamental shift in how health is defined and managed. Health becomes a continuously evolving dataset, updated in real time across all stages of life. The focus moves from reaction to prediction, from static plans to adaptive systems, from intervention to self-correction.

Artificial intelligence, machine learning, digital twins, predictive analytics platforms, continuous multi-biomarker wearables, synthetic biology, and autonomous medical systems will allow health trajectories to be forecast before disease manifests. Diagnostics will become ambient. Treatment will adapt dynamically. Biology itself becomes increasingly programmable.

But this transformation comes with real challenges — data privacy, equity, over-reliance on technology, loss of human connection, and the risk of eroding individual agency. Intelligence must be guided, not blindly trusted.

Building the infrastructure for medicine 4.0

This is where MyHealthPrac enters — not as a response to Medicine 4.0, but as an early foundation for it.

MyHealthPrac is a decentralised health management system designed to translate complexity into clarity. Built on over a decade of research, line-by-line journal reviews, and clinically informed logic, it transforms vast amounts of health data into actionable, root-cause solutions. Hard-coded algorithms, pattern recognition, and predictive frameworks allow practitioners to move beyond interpretation and into intelligence.

This is not theory. It is not a distant vision.

Not the future of health — the next standard

Medicine 4.0 is not coming someday. It is arriving now. And the systems built today will determine whether this new era empowers practitioners and individuals — or overwhelms them.

MyHealthPrac is being built to lead that transition.

Philosophy
6 min read
The 4 ages of medicine and the one we haven’t met yet
The 4 ages of medicine and the one we haven’t met yet
Medicine is entering a new era. From infection control to intelligent, predictive systems, this article traces the evolution of healthcare — and explains why Medicine 4.0 will transform how the world manages health.
August 5, 2025
Clarity, confidence, and real results start with one conversation. Let’s map your next chapter — together.